Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Virol ; : e0031724, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624231

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.

2.
Vet Res ; 55(1): 45, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589958

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Animales , Porcinos , Complejo de la Endopetidasa Proteasomal , Interferón lambda , Alphacoronavirus/fisiología , Ubiquitinas , Infecciones por Coronavirus/veterinaria
3.
Front Immunol ; 14: 1258778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691924

RESUMEN

Introduction: The porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV's intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated. Methods: In this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs). Results: Differentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data. Discussion: This study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing.


Asunto(s)
MicroARNs , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Largo no Codificante , Animales , Porcinos , ARN Circular/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Largo no Codificante/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Transcriptoma , Macrófagos Alveolares
4.
Viruses ; 15(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37515115

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has led to significant economic losses in the global porcine industry since the emergence of variant strains in 2010. The high mutability of coronaviruses endows PEDV with the ability to evade the host immune response, which impairs the effectiveness of vaccines. In our previous study, we generated a highly cell-passaged PEDV strain, CT-P120, which showed promise as a live attenuated vaccine candidate by providing satisfactory protection against variant PEDV infection in piglets. However, the mechanism by which the attenuated CT-P120 adapts to cells during passage, resulting in increased replication efficiency, remains unclear. To address this question, we conducted a comparative transcriptomic analysis of Vero E6 cells infected with either the original parental strain (CT-P10) or the cell-attenuated strain (CT-P120) of PEDV at 6, 12, and 24 h post-infection. Compared to CT-P10, CT-P120 infection resulted in a significant decrease in the number of differentially expressed genes (DEGs) at each time point. Functional enrichment analysis of genes revealed the activation of various innate immune-related pathways by CT-P10, notably attenuated during CT-P120 infection. To validate these results, we selected eight genes (TRAF3, IRF3, IFNL1, ISG15, NFKB1, MAP2K3, IL1A, and CCL2) involved in antiviral processes and confirmed their mRNA expression patterns using RT-qPCR, in line with the transcriptomic data. Subsequent protein-level analysis of selected genes via Western blotting and enzyme-linked immunosorbent assay corroborated these results, reinforcing the robustness of our findings. Collectively, our research elucidates the strategies underpinning PEDV attenuation and immune evasion, providing invaluable insights for the development of effective PEDV vaccines.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Chlorocebus aethiops , Animales , Porcinos , Células Vero , Perfilación de la Expresión Génica , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Diarrea
5.
Vet Microbiol ; 284: 109798, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37307767

RESUMEN

The type I interferon (IFN-I) is a critical component of the innate immune responses, and Coronaviruses (CoVs) from both the Alphacoronavirus and Betacoronavirus genera interfere with the IFN-I signaling pathway in various ways. Of the gammacoronaviruses that mainly infect birds, little is known about how infectious bronchitis virus (IBV), evades or interferes with the innate immune responses in avian hosts since few IBV strains have been adapted to grow in avian passage cells. Previously, we reported that a highly pathogenic IBV strain GD17/04 has adaptability in an avian cell line, providing a material basis for further study on the interaction mechanism. In the present work, we describe the suppression of IBV to IFN-I and the potential role of IBV-encoded nucleocapsid (N) protein. We show that IBV significantly inhibits the poly I: C-induced IFN-I production, accordingly the nuclear translocation of STAT1, and the expression of IFN-stimulated genes (ISGs). A detailed analysis revealed that N protein, acting as an IFN-I antagonist, significantly impedes the activation of the IFN-ß promoter stimulated by MDA5 and LGP2 but does not counteract its activation by MAVS, TBK1, and IRF7. Further results showed that IBV N protein, verified to be an RNA-binding protein, interferes with MDA5 recognizing double-stranded RNA (dsRNA). Moreover, we found that the N protein targets LGP2, which is required in the chicken IFN-I signaling pathway. Taken together, this study provides a comprehensive analysis of the mechanism by which IBV evades avian innate immune responses.


Asunto(s)
Virus de la Bronquitis Infecciosa , Interferón Tipo I , Animales , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Virus de la Bronquitis Infecciosa/genética , ARN Bicatenario/metabolismo , Transducción de Señal , Interferón Tipo I/genética
6.
Poult Sci ; 102(6): 102006, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099877

RESUMEN

Mycoplasma synoviae (M. synoviae) is an important pathogen in poultry industry and has led to major economic losses. Understanding the epidemiology is crucial to improve control and eradication program of M. synoviae. In this study, 487 samples suspected with M. synoviae infection were collected from August 2020 to June 2021 in China. Among 487 samples, 324 samples were MS positive, the positive rate was 66.53%, and 104 strains were isolated from 324 positive samples. The multilocus sequence typing (MLST) method based on seven housekeeping genes was used to conduct genotyping 104 M. synoviae strains isolated, and the 104 isolates belonged to 8 sequence types (STs) after MLST genotyping, and ST-34 had the highest proportion. After BURST analysis, all 104 isolates were divided into group 12 with other 56 strains isolated from China. Phylogenetic tree constructed by neighbor-joining method showed that nearly all of Chinese isolates (160 isolates) clustered together and separated from other reference isolates (217 isolates) in the PubMLST database. In conclusion, this study suggested that the M. synoviae strains in China were highly similar and independent of abroad strains.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma synoviae , Enfermedades de las Aves de Corral , Animales , Tipificación de Secuencias Multilocus/veterinaria , Pollos/genética , Filogenia , Granjas , Genotipo , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Enfermedades de las Aves de Corral/epidemiología
7.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869744

RESUMEN

With a possible origin from bats, the alphacoronavirus Porcine epidemic diarrhea virus (PEDV) causes significant hazards and widespread epidemics in the swine population. However, the ecology, evolution, and spread of PEDV are still unclear. Here, from 149,869 fecal and intestinal tissue samples of pigs collected in an 11-year survey, we identified PEDV as the most dominant virus in diarrheal animals. Global whole genomic and evolutionary analyses of 672 PEDV strains revealed the fast-evolving PEDV genotype 2 (G2) strains as the main epidemic viruses worldwide, which seems to correlate with the use of G2-targeting vaccines. The evolving pattern of the G2 viruses presents geographic bias as they evolve tachytely in South Korea but undergo the highest recombination in China. Therefore, we clustered six PEDV haplotypes in China, whereas South Korea held five haplotypes, including a unique haplotype G. In addition, an assessment of the spatiotemporal spread route of PEDV indicates Germany and Japan as the primary hubs for PEDV dissemination in Europe and Asia, respectively. Overall, our findings provide novel insights into the epidemiology, evolution, and transmission of PEDV, and thus may lay a foundation for the prevention and control of PEDV and other coronaviruses.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Filogenia , Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria
8.
Poult Sci ; 102(4): 102501, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736138

RESUMEN

Since 1999, QX-like (GI-19) avian infectious bronchitis viruses have been the predominant strains in China till now. Vaccination is the most effective way to control the disease, while live attenuated vaccine is widely used. In the current research, we evaluated the effect of several monovalent and bivalent live IBV vaccines in young chickens against the QX-like (GI-19) IBV infection. The results showed that monovalent 4/91 and bivalent Ma5+LDT3 vaccines could provide efficient protection in day-old chickens that reduced morbidity and mortality, ameliorated histopathology lesions, and reduced viral loads were observed. These data suggest that vaccination through nasal route with monovalent 4/91 or bivalent Ma5+LDT3 in day-old chickens could serve a safe and effective vaccination strategy for controlling QX-like (GI-19) infectious bronchitis virus.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Eficacia de las Vacunas , Vacunas Atenuadas/administración & dosificación , Vacunas Virales/administración & dosificación , Factores de Edad
9.
Front Microbiol ; 14: 1110197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36704612
10.
Front Cell Infect Microbiol ; 12: 1079297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530441

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, positive single-stranded RNA virus belonging to Coronaviridae family, Orthocoronavirinae subfamily, Alphacoronavirus genus. As one of the main causes of swine diarrhea, SADS-CoV has brought huge losses to the pig industry. Although we have a basic understanding of SADS-CoV, the research on the pathogenicity and interactions between host and virus are still limited, especially the metabolic changes induced by SADS-CoV infection. Here, we utilized a combination of untargeted metabolomics and lipomics to analyze the metabolic alteration in SADS-CoV infected cells. Significant changes were observed in 1257 of 2225 metabolites identified in untargeted metabolomics, while the number of lipomics was 435 out of 868. Metabolic pathway enrichment analysis showed that amino acid metabolism, tricarboxylic acid (TCA) cycle and ferroptosis were disrupted during viral infection, suggesting that these metabolic pathways may partake in pathological processes related to SADS-CoV pathogenesis. Collectively, our findings gain insights into the cellular metabolic disorder during SADS-CoV infection, offer a valuable resource for further exploration of the relationship between virus and host metabolic activities, and provide potential targets for the development of antiviral drugs.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Porcinos , Animales , Infecciones por Coronavirus/veterinaria , Alphacoronavirus/genética , Diarrea/veterinaria , Células Epiteliales
11.
iScience ; 25(11): 105394, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36281226

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, single-stranded, positive-sense RNA virus belonging to the Coronaviridae family. Increasingly studies have demonstrated that viruses could utilize autophagy to promote their own replication. However, the relationship between SADS-CoV and autophagy remains unknown. Here, we reported that SADS-CoV infection-induced autophagy and pharmacologically increased autophagy were conducive to viral proliferation. Conversely, suppression of autophagy by pharmacological inhibitors or knockdown of autophagy-related protein impeded viral replication. Furthermore, we demonstrated the underlying mechanism by which SADS-CoV triggered autophagy through the inactivation of the Akt/mTOR pathway. Importantly, we identified integrin α3 (ITGA3) as a potential antiviral target upstream of Akt/mTOR and autophagy pathways. Knockdown of ITGA3 enhanced autophagy and consequently increased the replication of SADS-CoV. Collectively, our studies revealed a novel mechanism that SADS-CoV-induced autophagy to facilitate its proliferation via Akt/mTOR pathway and found that ITGA3 was an effective antiviral factor for suppressing viral infection.

12.
Front Vet Sci ; 9: 978453, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061121

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteropathogenic coronavirus that causes severe diarrhea in neonatal piglets, leading to serious economic losses to the pig industries. At present, there are no effective control measures for SADS, making an urgent need to exploit effective antiviral therapies. Here, we confirmed that Aloe extract (Ae) can strongly inhibit SADS-CoV in Vero and IPI-FX cells in vitro. Furthermore, we detected that Emodin from Ae had anti-SADS-CoV activity in cells but did not impair SADS-CoV infectivity directly. The time-of-addition assay showed that Emodin inhibits SADS-CoV infection at the whole stages of the viral replication cycle. Notably, we found that Emodin can significantly reduce virus particles attaching to the cell surface and induce TLR3 (p < 0.001), IFN-λ3 (p < 0.01), and ISG15 (p < 0.01) expressions in IPI-FX cells, indicating that the anti-SADS-CoV activity of Emodin might be due to blocking viral attachment and the activation of TLR3-IFN-λ3-ISG15 signaling axis. These results suggest that Emodin has the potential value for the development of anti-SADS-CoV drugs.

13.
Viruses ; 14(6)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35746667

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the etiological agent of porcine epidemic diarrhea (PED) characterized by vomit, watery diarrhea, dehydration and high mortality. Outbreaks of highly pathogenic variant strains of PEDV have resulted in extreme economic losses to the swine industry all over the world. The study of host-virus interaction can help to better understand the viral pathogenicity. Many studies have shown that poly(A)-binding proteins are involved in the replication process of various viruses. Here, we found that the infection of PEDV downregulated the expression of poly(A)-binding protein cytoplasmic 1 (PABPC1) at the later infection stage in Vero cells. The overexpression of PABPC1 inhibited the proliferation of PEDV at transcription and translation level, and siRNA-mediated depletion of PABPC1 promoted the replication of PEDV. Furthermore, mass spectrometry analysis and immunoprecipitation assay confirmed that PABPC1 interacted with the nucleocapsid (N) protein of PEDV. Confocal microscopy revealed the co-localizations of PABPC1 with N protein in the cytoplasm. Taken together, these results demonstrate the antiviral effect of PABPC1 against PEDV replication by interacting with N protein, which increases understanding of the interaction between PEDV and host.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Chlorocebus aethiops , Diarrea , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Porcinos , Células Vero , Replicación Viral
14.
Front Vet Sci ; 9: 844058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372537

RESUMEN

African swine fever (ASF) is a highly contagious disease and provokes severe economic losses and health threats. At present no effective vaccine or treatment is available to prevent or cure ASF. Consequently, there is an urgent need to develop effective drugs against ASF virus (ASFV). Chlorine dioxide (ClO2), an ideal biocide, has broad-spectrum antibacterial activity and no drug resistance. Here, we found that ClO2 strongly inhibited ASFV replication in porcine alveolar macrophages (PAMs). The inhibitory effect of ClO2 occurred during viral attachment rather than entry, indicating that ClO2 suppressed the early stage of virus life cycle. ClO2 showed a potent anti-ASFV effect when added either before, simultaneously with, or after virus infection. Furthermore, ClO2 could destroy viral nucleic acids and proteins, which may contribute to its capacity of inactivating ASFV virions. The minimum concentration of degradation of ASFV nucleic acids by ClO2 is 1.2 µg/mL, and the degradation is a temperature-dependent manner. These have guiding significance for ClO2 prevention and control of ASFV infection in pig farms. In addition, ClO2 decreased the expression of ASFV-induced inflammatory cytokines. Overall, our findings suggest that ClO2 may be an ideal candidate for the development of novel anti-ASFV prophylactic and therapeutic drugs in swine industry.

15.
Front Vet Sci ; 9: 836110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280133

RESUMEN

Mycoplasma synoviae (MS) is a major avian pathogen that causes respiratory damage, infectious synovitis, and arthritis in chickens and causes serious economic losses to the global poultry industry. Despite its significance, knowledge on pathogenicity and pathogenic mechanism of MS is lacking, especially regarding its antigens. Bioinformatic analysis showed that the known MS proteins are only the tip of the iceberg among many MS membrane proteins. In this study, we identified and expressed a novel MS membrane protein P35. Sequence similarity showed that P35 was conservative and commonly existed among MS strains. Membrane protein extraction and immunofluorescence assay confirmed that P35 was distributed on the surface of MS. The production of specific antibodies after immunization with recombinant protein rP35 suggested its immunogenicity. The antigenicity of P35 was evaluated from two aspects by using polyantiserum against MS and rP35. Furthermore, in assays to identify the immune peptides of P35, all successfully expressed truncated segments could react with positive polyantiserum of MS, suggesting that P35 had more than one immune peptide. In conclusion, our study successfully identified P35 as a conservative antigen of MS, which may act as a potential candidate for the future development of a vaccine against MS.

16.
Virol Sin ; 37(1): 70-81, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35234615

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the main cause of diarrhea, vomiting, and mortality in pigs, which results in devastating economic loss to the pig industry around the globe. In recent years, the advent of RNA-sequencing technologies has led to delineate host responses at late stages of PEDV infection; however, the comparative analysis of host responses to early-stage infection of virulent and avirulent PEDV strains is currently unknown. Here, using the BGI DNBSEQ RNA-sequencing, we performed global gene expression profiles of pig intestinal epithelial cells infected with virulent (GDS01) or avirulent (HX) PEDV strains for 3, 6, and 12 â€‹h. It was observed that over half of all significantly dysregulated genes in both infection groups exhibited a down-regulated expression pattern. Functional enrichment analyses indicated that the differentially expressed genes (DEGs) in the GDS01 group were predominantly related to autophagy and apoptosis, whereas the genes showing the differential expression in the HX group were strongly enriched in immune responses/inflammation. Among the DEGs, the functional association of TLR3 and IFIT2 genes with the HX and GDS01 strains replication was experimentally validated by TLR3 inhibition and IFIT2 overexpression systems in cultured cells. TLR3 expression was found to inhibit HX strain, but not GDS01 strain, replication by enhancing the IFIT2 expression in infected cells. In conclusion, our study highlights similarities and differences in gene expression patterns and cellular processes/pathways altered at the early-stage infection of PEDV virulent and avirulent strains. These findings may provide a foundation for establishing novel therapies to control PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Células Epiteliales , Perfilación de la Expresión Génica , Porcinos
17.
Poult Sci ; 101(3): 101660, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35077920

RESUMEN

Mycoplasma synoviae (MS), an important avian pathogen, can cause chronic respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, leading serious economic losses in the global poultry industry. To date, studies have shown significant different transcript profiles using various chicken cells after MS infection. However, in vitro cell models cannot fully represent the complex in vivo regulations after adventitious infection. The objective of this study was to explore the nature of the host-pathogen interaction during MS infection. The tracheal and spleen tissues of chickens were collected at d 0, 1, 3, and 5 postinoculation, and samples were analyzed for differential gene expression using Illumina RNA sequencing. A lot of significantly differentially expressed genes (DEGs) were observed in this analysis, and 861 DEGs were observed in trachea tissues and 753 DEGs were observed in spleen samples. Many of DEGs in trachea tissues participate in a variety of cellular activities, especially cellular metabolism. Immune-related DEGs were mainly enriched at d 3, and 5 postinfection in trachea tissues. While, DEGs in spleen tissues were significantly and mainly enriched into immune-related pathways. The results of this study show the direct interactions between MS and the chicken trachea and spleen for the first time. Early dysregulation of tissue-wide gene expression as observed here set the stage for persistent infection of MS.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma synoviae , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Infecciones por Mycoplasma/veterinaria , Mycoplasma synoviae/genética , Óvulo , Enfermedades de las Aves de Corral/genética , Tráquea
18.
Transbound Emerg Dis ; 69(4): 2065-2075, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34148289

RESUMEN

Swine acute diarrhoea syndrome coronavirus (SADS-CoV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhoea in neonatal piglets, leading to significant economic losses to the swine industry. Currently, there are no suitable serological methods to assess the infection of SADS-CoV and effectiveness of vaccines, making an urgent need to exploit effective enzyme-linked immunosorbent assay (ELISA) to compensate for this deficiency. Here, a recombinant plasmid that expresses the spike (S) protein of SADS-CoV fused to the Fc domain of human IgG was constructed to generate recombinant baculovirus and expressed in HEK 293F cells. The S-Fc protein was purified with protein G Resin, which retained reactivity with anti-human Fc and anti-SADS-CoV antibodies. The S-Fc protein was then used to develop an indirect ELISA (S-iELISA) and the reaction conditions of S-iELISA were optimized. As a result, the cut-off value was determined as 0.3711 by analyzing OD450nm values of 40 SADS-CoV-negative sera confirmed by immunofluorescence assay (IFA) and western blot. The coefficient of variation (CV) of 6 SADS-CoV-positive sera within and between runs of S-iELISA were both less than 10%. The cross-reactivity assays demonstrated that S-iELISA was non-cross-reactive with other swine viruses' sera. Furthermore, the overall coincidence rate between IFA and S-iELISA was 97.3% based on testing 111 clinical serum samples. Virus neutralization test with seven different OD450nm values of the sera showed that the OD450nm values tested by S-iELISA are positively correlated with the virus neutralization assay. Finally, a total of 300 pig field serum samples were tested by S-iELISA and commercial kits of other swine enteroviruses showed that the IgG-positive for SADS-CoV, TGEV, PDCoV and PEDV was 81.7, 54, 65.3 and 6%, respectively. The results suggest that this S-iELISA is specific, sensitive, repeatable and can be applied for the detection of the SADS-CoV infection in the swine industry.


Asunto(s)
Infecciones por Coronavirus , Enfermedades de los Porcinos , Alphacoronavirus , Animales , Anticuerpos Antivirales , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunoglobulina G , Proteínas Recombinantes , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos
19.
Viruses ; 13(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34578280

RESUMEN

Avian infectious bronchitis virus (IBV) is an important gammacoronavirus. The virus is highly contagious, can infect chickens of all ages, and causes considerable economic losses in the poultry industry worldwide. In the last few decades, numerous studies have been published regarding pathogenicity, vaccination, and host immunity-virus interaction. In particular, innate immunity serves as the first line of defense against invasive pathogens and plays an important role in the pathogenetic process of IBV infection. This review focuses on fundamental aspects of host innate immune responses after IBV infection, including identification of conserved viral structures and different components of host with antiviral activity, which could provide useful information for novel vaccine development, vaccination strategies, and intervention programs.


Asunto(s)
Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/inmunología , Animales , Pollos/virología , Infecciones por Coronavirus/prevención & control , Virus de la Bronquitis Infecciosa/patogenicidad , Enfermedades de las Aves de Corral/prevención & control , Vacunación , Desarrollo de Vacunas , Vacunas Virales/inmunología
20.
Viruses ; 13(7)2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206896

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe reproductive failure in sows and respiratory diseases in growing and finishing pigs and results in great economic losses to the swine industry. Although vaccines are available, PRRSV remains a major threat to the pig farms. Thus, there is an urgent need to develop antiviral drugs to compensate for vaccines. In this study, we report that Aloe extract (Ae) can strongly inhibit PRRSV in Marc-145 cells and porcine alveolar macrophages lines (iPAMs) in vitro. Furthermore, we identified a novel anti-PRRSV molecule, Emodin, from Ae by high-performance liquid chromatography (HPLC). Emodin exerted its inhibitory effect through targeting the whole stages of PRRSV infectious cycle. Moreover, we also found that Emodin can inactivate PRRSV particles directly. Notably, we confirmed that Emodin was able to significantly induce Toll-like receptor 3 (TLR3) (p < 0.01), IFN-α (p < 0.05) and IFN-ß expression in iPAMs, indicating that induction of antiviral agents via TLR3 activation by Emodin might contribute to its anti-PRRSV effect. These findings imply that the Emodin from Aloe could hamper the proliferation of PRRSV in vitro and might constitute a new approach for treating PRRSV infection.


Asunto(s)
Aloe/química , Antivirales/farmacología , Emodina/farmacología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Receptor Toll-Like 3/genética , Animales , Línea Celular , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/virología , Síndrome Respiratorio y de la Reproducción Porcina , Porcinos , Receptor Toll-Like 3/inmunología , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...